Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nat Rev Nephrol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443710

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the presence of proliferative lesions throughout the body. Management of TSC is challenging because patients have a multifaceted systemic illness with prominent neurological and developmental impact as well as potentially severe kidney, heart and lung phenotypes; however, every organ system can be involved. Adequate care for patients with TSC requires a coordinated effort involving a multidisciplinary team of clinicians and support staff. This clinical practice recommendation was developed by nephrologists, urologists, paediatric radiologists, interventional radiologists, geneticists, pathologists, and patient and family group representatives, with a focus on TSC-associated kidney manifestations. Careful monitoring of kidney function and assessment of kidney structural lesions by imaging enable early interventions that can preserve kidney function through targeted approaches. Here, we summarize the current evidence and present recommendations for the multidisciplinary management of kidney involvement in TSC.

2.
Trials ; 25(1): 120, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355627

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD. METHODS: The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m2, and on stable treatment with the highest tolerated dose of tolvaptan in routine clinical care. Patients will be randomly assigned (1:1) to daily oral HCT 25 mg or matching placebo treatment for 156 weeks, in addition to standard care. OUTCOMES: The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m2 per year) in HCT versus placebo-treated patients, calculated by linear mixed model analysis using all available creatinine values from week 12 until the end of treatment. Secondary outcomes include changes in quality-of-life questionnaire scores (TIPS, ADPKD-UIS, EQ-5D-5L, SF-12) and changes in 24-h urine volume. CONCLUSION: The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/efeitos adversos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Hidroclorotiazida/efeitos adversos , Qualidade de Vida , Taxa de Filtração Glomerular , Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Rim , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
3.
Transpl Infect Dis ; 26(1): e14233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180168

RESUMO

BACKGROUND: Cytomegalovirus (CMV) infections are a common complication after kidney transplantation (KTx) and negatively affecting patient outcome. Valganciclovir (VGC) prophylaxis is often limited by drug-induced side effects and dose reduction due to decline in kidney function. METHOD: In the present study, episodes of CMV viremia in the first year after KTx in a cohort of 316 recipients were analyzed retrospectively to identify risk factors linked to persistent infections. RESULTS: In the studied cohort, 18.7% of patients showed a high-risk (HR) constellation (D+/R-) for CMV infections. CMV viremia affected 22% of our cohort, with HR patients being the most affected cohort (44.1%). Within this group, most viremic events (65.3%) occurred while patients were still on prophylactic therapy, showing significantly higher viral loads and a longer duration compared to seropositive recipients. CONCLUSION: The analysis at hand revealed that detection of viremia under ongoing antiviral prophylaxis bears an increased risk for sustained viral replication and antiviral drug resistance in HR patients. We identified low estimated glomerular filtration rate (eGFR) and lower dose VGC prophylaxis post-KTx as a risk factor for breakthrough infections in HR patients in our single center cohort. These patients might benefit from a closer CMV monitoring or novel prophylactic agents as letermovir.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Citomegalovirus , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Viremia/tratamento farmacológico , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/epidemiologia , Infecções por Citomegalovirus/prevenção & controle , Valganciclovir/uso terapêutico , Transplantados , Ganciclovir/uso terapêutico , Ganciclovir/farmacologia
4.
Clin Kidney J ; 17(1): sfad262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186869

RESUMO

Backgound: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, and leads to a steady loss of kidney function in adulthood. The variable course of the disease makes it necessary to identify the patients with rapid disease progression who will benefit the most from targeted therapies and interventions. Currently, magnetic resonance imaging-based volumetry of the kidney is the most commonly used tool for this purpose. Biomarkers that can be easily and quantitatively determined, which allow a prediction of the loss of kidney function, have not yet been established in clinical practice. The glycoprotein Dickkopf 3 (DKK3) which is secreted in the renal tubular epithelium upon stress and contributes to tubulointerstitial fibrosis via the Wnt signaling pathway, was recently described as a biomarker for estimating risk of kidney function loss, but has not been investigated for ADPKD. This study aimed to obtain a first insight into whether DKK3 may indeed improve outcome prediction in ADPKD in the future. Methods: In 184 ADPKD patients from the AD(H)PKD registry and 47 healthy controls, the urinary DKK3 (uDKK3) levels were determined using ELISA. Multiple linear regression was used to examine the potential of these values in outcome prediction. Results: ADPKD patients showed significantly higher uDKK3 values compared with the controls (mean 1970 ± 5287 vs 112 ± 134.7 pg/mg creatinine). Furthermore, there was a steady increase in uDKK3 with an increase in the Mayo class (A/B 1262 ± 2315 vs class D/E 3104 ± 7627 pg/mg creatinine), the best-established biomarker of progression in ADPKD. uDKK3 also correlated with estimated glomerular filtration rate (eGFR). Patients with PKD1 mutations show higher uDKK3 levels compared with PKD2 patients (PKD1: 2304 ± 5119; PKD2: 506.6 ± 526.8 pg/mg creatinine). Univariate linear regression showed uDKK3 as a significant predictor of future eGFR slope estimation. In multiple linear regression this effect was not significant in models also containing height-adjusted total kidney volume and/or eGFR. However, adding both copeptin levels and the interaction term between copeptin and uDKK3 to the model resulted in a significant predictive value of all these three variables and the highest R2 of all models examined (∼0.5). Conclusion: uDKK3 shows a clear correlation with the Mayo classification in patients with ADPKD. uDKK3 levels correlated with kidney function, which could indicate that uDKK3 also predicts a disproportionate loss of renal function in this collective. Interestingly, we found an interaction between copeptin and uDKK3 in our prediction models and the best model containing both variables and their interaction term resulted in a fairly good explanation of variance in eGFR slope compared with previous models. Considering the limited number of patients in these analyses, future studies will be required to confirm the results. Nonetheless, uDKK3 appears to be an attractive candidate to improve outcome prediction of ADPKD in the future.

5.
J Am Soc Nephrol ; 35(3): 321-334, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073039

RESUMO

SIGNIFICANCE STATEMENT: There is an unmet need for biomarkers of disease progression in autosomal dominant polycystic kidney disease (ADPKD). This study investigated urinary extracellular vesicles (uEVs) as a source of such biomarkers. Proteomic analysis of uEVs identified matrix metalloproteinase 7 (MMP-7) as a biomarker predictive of rapid disease progression. In validation studies, MMP-7 was predictive in uEVs but not in whole urine, possibly because uEVs are primarily secreted by tubular epithelial cells. Indeed, single-nucleus RNA sequencing showed that MMP-7 was especially increased in proximal tubule and thick ascending limb cells, which were further characterized by a profibrotic phenotype. Together, these data suggest that MMP-7 is a biologically plausible and promising uEV biomarker for rapid disease progression in ADPKD. BACKGROUND: In ADPKD, there is an unmet need for early markers of rapid disease progression to facilitate counseling and selection for kidney-protective therapy. Our aim was to identify markers for rapid disease progression in uEVs. METHODS: Six paired case-control groups ( n =10-59/group) of cases with rapid disease progression and controls with stable disease were formed from two independent ADPKD cohorts, with matching by age, sex, total kidney volume, and genetic variant. Candidate uEV biomarkers were identified by mass spectrometry and further analyzed using immunoblotting and an ELISA. Single-nucleus RNA sequencing of healthy and ADPKD tissue was used to identify the cellular origin of the uEV biomarker. RESULTS: In the discovery proteomics experiments, the protein abundance of MMP-7 was significantly higher in uEVs of patients with rapid disease progression compared with stable disease. In the validation groups, a significant >2-fold increase in uEV-MMP-7 in patients with rapid disease progression was confirmed using immunoblotting. By contrast, no significant difference in MMP-7 was found in whole urine using ELISA. Compared with healthy kidney tissue, ADPKD tissue had significantly higher MMP-7 expression in proximal tubule and thick ascending limb cells with a profibrotic phenotype. CONCLUSIONS: Among patients with ADPKD, rapid disease progressors have higher uEV-associated MMP-7. Our findings also suggest that MMP-7 is a biologically plausible biomarker for more rapid disease progression.


Assuntos
Vesículas Extracelulares , Rim Policístico Autossômico Dominante , Humanos , Biomarcadores , Progressão da Doença , Metaloproteinase 7 da Matriz , Rim Policístico Autossômico Dominante/genética , Proteômica
7.
Clin Kidney J ; 16(11): 2194-2204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915893

RESUMO

Background: The identification of new biomarkers in autosomal-dominant polycystic kidney disease (ADPKD) is crucial to improve and simplify prognostic assessment as a basis for patient selection for targeted therapies. Post hoc analyses of the TEMPO 3:4 study indicated that copeptin could be one of those biomarkers. Methods: Copeptin was tested in serum samples from patients of the AD(H)PKD study. Serum copeptin levels were measured using a time-resolved amplified cryptate emission (TRACE)-based assay. In total, we collected 711 values from 389 patients without tolvaptan treatment and a total of 243 values (of which 64 were pre-tolvaptan) from 94 patients on tolvaptan. These were associated with rapid progression and disease-causing gene variants and their predictive capacity tested and compared with the Mayo Classification. Results: As expected, copeptin levels showed a significant negative correlation with estimated glomerular filtration rate (eGFR). Measurements on tolvaptan showed significantly higher copeptin levels (9.871 pmol/L vs 23.90 pmol/L at 90/30 mg; P < .0001) in all chronic kidney disease stages. Linear regression models (n = 133) show that copeptin is an independent predictor of eGFR slope. A clinical model (including eGFR, age, gender, copeptin) was nearly as good (R2 = 0.1196) as our optimal model (including height-adjusted total kidney volume, eGFR, copeptin, R2 = 0.1256). Adding copeptin to the Mayo model improved future eGFR estimation. Conclusion: Copeptin levels are associated with kidney function and independently explained future eGFR slopes. As expected, treatment with tolvaptan strongly increases copeptin levels.

8.
Nat Aging ; 3(12): 1544-1560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957359

RESUMO

Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.


Assuntos
Fragilidade , Longevidade , Animais , Humanos , Longevidade/genética , Proteínas Quinases Ativadas por AMP/genética , Envelhecimento/genética , Peixes/metabolismo
9.
Cell Rep Med ; 4(11): 101283, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935200

RESUMO

Ketogenic dietary interventions (KDIs) are beneficial in animal models of autosomal-dominant polycystic kidney disease (ADPKD). KETO-ADPKD, an exploratory, randomized, controlled trial, is intended to provide clinical translation of these findings (NCT04680780). Sixty-six patients were randomized to a KDI arm (ketogenic diet [KD] or water fasting [WF]) or the control group. Both interventions induce significant ketogenesis on the basis of blood and breath acetone measurements. Ninety-five percent (KD) and 85% (WF) report the diet as feasible. KD leads to significant reductions in body fat and liver volume. Additionally, KD is associated with reduced kidney volume (not reaching statistical significance). Interestingly, the KD group exhibits improved kidney function at the end of treatment, while the control and WF groups show a progressive decline, as is typical in ADPKD. Safety-relevant events are largely mild, expected (initial flu-like symptoms associated with KD), and transient. Safety assessment is complemented by nuclear magnetic resonance (NMR) lipid profile analyses.


Assuntos
Dieta Cetogênica , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/tratamento farmacológico , Estudos de Viabilidade , Fígado , Imageamento por Ressonância Magnética
10.
iScience ; 26(10): 107879, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37868627

RESUMO

Renal ischemia-reperfusion injury (IRI) is associated with reduced allograft survival, and each additional hour of cold ischemia time increases the risk of graft failure and mortality following renal transplantation. Receptor-interacting protein kinase 3 (RIPK3) is a key effector of necroptosis, a regulated form of cell death. Here, we evaluate the first-in-human RIPK3 expression dataset following IRI in kidney transplantation. The primary analysis included 374 baseline biopsy samples obtained from renal allografts 10 minutes after onset of reperfusion. RIPK3 was primarily detected in proximal tubular cells and distal tubular cells, both of which are affected by IRI. Time-to-event analysis revealed that high RIPK3 expression is associated with a significantly higher risk of one-year transplant failure and prognostic for one-year (death-censored) transplant failure independent of donor and recipient associated risk factors in multivariable analyses. The RIPK3 score also correlated with deceased donation, cold ischemia time and the extent of tubular injury.

11.
EMBO J ; 42(21): e113891, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743763

RESUMO

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Assuntos
Cílios , Organelas , Cílios/metabolismo , Diferenciação Celular
12.
Kidney Int Rep ; 8(8): 1616-1626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37547529

RESUMO

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic cause of kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the first drug with proven disease-modifying activity. Long-term treatment adherence is crucial, but a considerable fraction of patients discontinue treatment, because of aquaretic side effects. Methods: Twenty-four-hour urine was collected in 75 patients with ADPKD during up-titration of tolvaptan and, in combination with clinical characteristics, examined to identify factors influencing urine volume. Patient-reported outcomes were analyzed using the Short Form-12 (SF-12) and patient-reported outcomes questionnaires reporting micturition frequency and burden of urine volume. Results: Initiation of therapy led to a large increase in urine volume followed by only minor further increase during up-dosing. Younger patients and patients with better kidney function experienced a larger relative rise. Twenty-four-hour urine osmolality dropped by about 50% after therapy initiation independently of dose, with a considerable proportion of patients achieving adequate suppression. Sodium and potassium intake turned out to be the only significant modifiable factors for urine volume after multivariate linear regression models, whereas age and weight could be identified as non-modifiable factors. No change in quality of life (QoL) was detected in relation to treatment or urine volume using SF-12 questionnaires, a finding that was further supported by the results of the patient-reported outcomes assessment. Conclusion: This study provides an in-detail analysis of factors associated with the degree of polyuria on tolvaptan and puts them into the context of QoL. These findings will contribute to optimized patient counseling regarding this treatment option in ADPKD.

13.
Chem Biol Interact ; 382: 110610, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348670

RESUMO

Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.


Assuntos
Dopamina , Quercetina , Transmissão Sináptica , Animais , Caenorhabditis elegans , Quercetina/farmacologia , Dopamina/metabolismo , Proteínas de Caenorhabditis elegans , Fármacos Neuroprotetores/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Transmissão Sináptica/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina
14.
Nature ; 616(7958): 814-821, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046086

RESUMO

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Assuntos
Envelhecimento , Longevidade , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Ratos , Envelhecimento/genética , Insulina/metabolismo , Longevidade/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , RNA Circular , Somatomedinas , Nucleossomos , Histonas , Divisão Celular , Restrição Calórica
15.
Sci Rep ; 13(1): 4281, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922538

RESUMO

Mycophenolate Mofetil (MMF) has an established role as a therapeutic agent in childhood nephrotic syndrome. While other immunosuppressants have been shown to positively affect podocytes, direct effects of MMF on podocytes remain largely unknown. The present study examines the effects of MMF's active component Mycophenolic Acid (MPA) on the transcriptome of podocytes and investigates its biological significance. We performed transcriptomics in cultured murine podocytes exposed to MPA to generate hypotheses on podocyte-specific effects of MPA. Accordingly, we further analyzed biological MPA effects on actin cytoskeleton morphology after treatment with bovine serum albumin (BSA) by immunofluorescence staining, as well as on cell survival following exposure to TNF-α and cycloheximide by neutral red assay. MPA treatment significantly (adjusted p < 0.05) affected expression of 351 genes in podocytes. Gene Ontology term enrichment analysis particularly clustered terms related to actin and inflammation-related cell death. Indeed, quantification of the actin cytoskeleton of BSA treated podocytes revealed a significant increase of thickness and number of actin filaments after treatment with MPA. Further, MPA significantly reduced TNFα and cycloheximide induced cell death. MPA has a substantial effect on the transcriptome of podocytes in vitro, particularly including functional clusters related to non-immune cell dependent mechanisms. This may provide a molecular basis for direct beneficial effects of MPA on the structural integrity and survival of podocytes under pro-inflammatory conditions.


Assuntos
Ácido Micofenólico , Podócitos , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Sobrevivência Celular , Cicloeximida , Ácido Micofenólico/farmacologia , Podócitos/metabolismo
16.
Kidney Int Rep ; 8(3): 455-466, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938073

RESUMO

Introduction: Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic cause of kidney failure. Because of the heterogeneity in disease progression in ADPKD, parameters predicting future outcome are important. The disease-causing genetic variant is one of these parameters. Methods: A multiplex polymerase chain reaction (PCR)-based panel (MPP) was established for analysis of 6 polycystic kidney disease (PKD) genes (PKD1, PKD2, HNF1B, GANAB, DZIP1L, and PKHD1) in 441 patients with ADPKD. Selected patients were additionally sequenced using Sanger sequencing or a custom enrichment-based gene panel. Results were combined with clinical characteristics to assess the impact of genetic data on clinical decision-making. Variants of unclear significance (VUS) were considered diagnostic based on a classic ADPKD clinical phenotype. Results: Using the MPP, disease-causing variants were detected in 65.3% of patients. Sanger sequencing and the custom gene panel in 32 patients who were MPP-negative revealed 20 variants missed by MPP, (estimated overall false negative rate 24.6%, false-positive rate 9.4%). Combining clinical and genetic data revealed that knowledge of the genotype could have impacted the treatment decision in 8.2% of patients with a molecular genetic diagnosis. Sequencing only the PKD1 pseudogene homologous region in MPP-negative patients resulted in an acceptable false-negative rate of 3.28%. Conclusion: The MPP yields rapid genotype information at lower costs and allows for simple extension of the panel for new disease genes. Additional sequencing of the PKD1 pseudogene homologous region is required in negative cases. Access to genotype information even in settings with limited resources is important to allow for optimal patient counseling in ADPKD.

17.
Rheumatology (Oxford) ; 62(10): 3459-3468, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752501

RESUMO

OBJECTIVE: We describe a family with a novel mutation in the TNF Receptor Superfamily Member 1A (TNFRSF1A) gene causing TNF receptor-associated periodic syndrome (TRAPS) with renal AA amyloidosis. METHODS: Case series of affected family members. We further investigated the plasma metabolome of these patients in comparison with healthy controls using mass spectrometry. RESULTS: In all symptomatic family members, we detected the previously undescribed variant c.332A>G (p.Q111R) in the TNFRSF1A gene. Canakinumab proved an effective treatment option leading to remission in all treated patients. One patient with suspected renal amyloidosis showed near normalization of proteinuria under treatment. Analysis of the metabolome revealed 31 metabolic compounds to be upregulated and 35 compounds to be downregulated compared with healthy controls. The most dysregulated metabolites belonged to pathways identified as arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and cysteine and methionine metabolism. Interestingly, the metabolic changes observed in all three TRAPS patients seemed independent of treatment with canakinumab and subsequent remission. CONCLUSION: We present a novel mutation in the TNFRSF1A gene associated with amyloidosis. Canakinumab is an effective treatment for individuals with this new likely pathogenic variant. Alterations in the metabolome were most prominent in the pathways related to arginine biosynthesis, tryptophan metabolism, and metabolism of cysteine and methionine, and seemed to be unaffected by treatment with canakinumab. Further investigation is needed to determine the role of these metabolomic changes in the pathophysiology of TRAPS.


Assuntos
Amiloidose , Febre Familiar do Mediterrâneo , Humanos , Receptores do Fator de Necrose Tumoral , Febre Familiar do Mediterrâneo/tratamento farmacológico , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/complicações , Cisteína/genética , Triptofano , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Amiloidose/complicações , Mutação , Metionina , Arginina
18.
J Am Soc Nephrol ; 34(5): 772-792, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758124

RESUMO

SIGNIFICANCE STATEMENT: AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND: Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS: Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS: We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS: CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , NAD/metabolismo , Restrição Calórica , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Hipóxia
20.
Clin Kidney J ; 16(2): 384-393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755834

RESUMO

Background: Vascular abnormalities and endothelial dysfunction are part of the spectrum of autosomal dominant polycystic kidney disease (ADPKD). The mechanisms behind these manifestations, including potential effects on the endothelial surface layer (ESL) and glycocalyx integrity, remain unknown. Methods: Forty-five ambulatory adult patients with ADPKD were enrolled in this prospective, observational, cross-sectional, single-centre study. Fifty-one healthy volunteers served as a control group. All participants underwent real-time microvascular perfusion measurements of the sublingual microcirculation using sidestream dark field imaging. After image acquisition, the perfused boundary region (PBR), an inverse parameter for red blood cell (RBC) penetration into the ESL, was automatically calculated. Microvascular perfusion was assessed by RBC filling and capillary density. Concentrations of circulating glycocalyx components were determined by enzyme-linked immunosorbent assay. Results: ADPKD patients showed a significantly larger PBR compared with healthy controls (2.09 ± 0.23 µm versus 1.79 ± 0.25 µm; P < .001). This was accompanied by significantly lower RBC filling (70.4 ± 5.0% versus 77.9 ± 5.4%; P < .001) as well as a higher valid capillary density {318/mm2 [interquartile range (IQR) 269-380] versus 273/mm2 [230-327]; P = .007}. Significantly higher plasma concentrations of heparan sulphate (1625 ± 807 ng/ml versus 1329 ± 316 ng/ml; P = .034), hyaluronan (111 ng/ml [IQR 79-132] versus 92 ng/ml [82-98]; P = .042) and syndecan-1 were noted in ADPKD patients compared with healthy controls (35 ng/ml [IQR 27-57] versus 29 ng/ml [23-42]; P = .035). Conclusions: Dimensions and integrity of the ESL are impaired in ADPKD patients. Increased capillary density may be a compensatory mechanism for vascular dysfunction to ensure sufficient tissue perfusion and oxygenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...